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LETTER TO THE EDITOR 

On the q oscillator and the quantum algebra su, ( 1 , l )  

P P Kulish and E V Damaskinsky 
Steklov Mathematical Institute, Leningrad Branch, Fontanka 27, 19101 1 Leningrad, USSR 

Received 2 March 1990 

Abstract. We discuss some problems of the q-deformed harmonic oscillator. Different q 
bosonisations of the quantum su,( l ,  1) algebra are given and the corresponding infinite 
dimensional representations of discrete series are analysed. 

The development of the quantum inverse problem method [ 11 and the study of solutions 
to the Yang-Baxter equation [2] gave rise to the notion of quantum groups and algebras 
(cf [3,4] and references therein). The growing interest in the subject is connected with 
the fact that the properties of quantum groups and algebras are quite similar to those 
of Lie groups and Lie algebras in connection with both the representation theory and 
the possible physical applications. In particular, quantum superalgebras [ 5,6] and the 
q deformation of the quantum harmonic oscillator [7-91 were defined. It was demon- 
strated that the q deformation of the oscillator ( q  oscillator) can be used in the quantum 
algebra representation theory in the same manner as in the case of the harmonic 
oscillator [7-91. 

In this letter we discuss the theory of the q oscillator, constructing for the q 
annihilation operator a shift operator which generates q-coherent states. We formulate 
some important yet unsolved problems concerning the q oscillator which seem to be 
more complicated than those of the harmonic oscillator. One of them is the question 
of equivalence of the associative algebras d ( q )  generated by the q oscillators with 
different values of q. For the Fock representation we find the expression for the q 
oscillator in terms of the boson operators. Alternative forms of the q commutation 
relations are given and a relationship between different multimode generalisations 
[6,10] is established. We propose a realisation of the quantum sI(2) generators in 
terms of one q oscillator instead of two as used in [7-91. The corresponding infinite- 
dimensional representations are reducible. The irreducible components of their 
decompositions belong to the discrete series of the quantum algebra su( 1, 1). 

Let us consider an associative algebra a( q )  with units generated by three elements 
a, a+, N which satisfy the relations 

(1) [ N, a+]  = a+ [ N, a]  = - a  

and 

aa+ - qa+a = q - N .  (2) 

To introduce * operation in d(q) we suppose q E R: 

( a ) *  = a+ ( a + ) *  = a N * = N .  (3)  
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Then the relations (1) and (2) are invariant with respect to the * anti-involution. Within 
the pure algebraic frame one can use instead of N the generators k + ,  k -  with relations 
[ k' = exp( f N In q)]: 

k'a = q'lak' k + k -  = k-k' = 1 ( k * ) *  = k'. (4)  
However we prefer the generator N with simple physical interpretation (the excitation 
number operator for the Fock space representation cf below). 

There exist different forms of the relations (1) and (2). The modified operators [6] 
a = q - N / 2 a ,  a+ - - a + q - N / 2  satisfy (1) and the commutation relation 

The operators A = qNa, A+ = a + q N  satisfy (1)  and 

[ a ,  a+]  = q - I N  ( 5 )  

AA' - pA+A = 1 ( p  = q 2 ) .  (6) 
As far as we know the latter form with p E [ -1 ,  a) was first introduced in [ l l ]  where 
the Fock space representation was described. Later on it was used in so-called hadronic 
mechanics and Lie-admissible algebras (cf [ 121 and references therein). Recently the 
q oscillator (in different forms) was rediscovered by different authors [7-101 in connec- 
tion with quantum groups and algebras. One can construct the representation of the 
relations ( l ) ,  (2)  (or ( 5 ) ,  (6)) in the Fock space XF spanned on normalised eigenstates 
In) of the excitation number operator N :  

al0) = 0 Nln)  = nln) n =0, 1 , 2 , .  . . (7)  

In) = ([ n31 ! U + ) "  10) (8)  

[n l ,  !=[11, [21,. . , [n]  (9) 

One can express In) in terms of a+ or A+ operators with slightly different coefficients. 
The basis (8) is orthonormal due to the formulae ( p  = q 2 ) :  

q" - q-" 
[n], = [n]  =- q-q-1 . 

a (a+)"  = (qa +)"U + [ n],( U + ) "  - 1  q-  (10) 

a(a+)" = ( C Y + ) " C Y  +[n];-l(a+)"-'p-N (11) 
A(A')" = (pA+)"A+[n]L(A+)"- '  (12) 

rn1; = (p"  - l ) / ( p -  1) = q"-Lrnl ,  (13) 

where we also use the notation from the q analysis [13] 

p = q2.  
In the Fock space XF it is possible to express the q oscillator in terms of the usual 
Bose operators b, b+: 

Similar expressions for the quantum s1,(2) generators in terms of the Lie algebra sl(2) 
generators were constructed in [ 141. 

As a result we obtain from (14), 
( l ) ,  (2) or the relation with q - ' :  

N aa+ - q-la+a = q . 
It follows from ( 2 ) ,  (15) or (14) that 

[b, b'] = 1 and N = b'b for a, a+ the relations 

(15) 
in XF there exist the equalities [7,9] 

aa+ = [ N +  13. (16) 
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Is it possible to obtain (16) for a, a+ using the relations ( l ) ,  (2) only? Algebraic 
manipulations show that the operator 

C = [ N] - a+a (17) 

commutes with a in a different way in the cases of relations ( l ) ,  (2) or ( l ) ,  (15) 
respectively: 

aC = qCa aC = q-lca.  (18) 

They are the same in X ,  because C = 0 due to (16). 
Taking into account (14) it is easy to conclude that in XF the basis In) is nothing 

but the well known n-boson states. This is not so for the corresponding coherent 
states, which can be constructed for the operators a (a or A) [12,8] 

alz) = zlz) I z )  = ( X (  z))-"*e, ( z a  +)lo) (19) 

In these formulae the notation of q analysis for the 4 exponent is used. The same set 
of states (19) can be obtained introducing an operator T which satisfies the commutation 
relation 

[a, TI = 1 (21) 

a a ( z ) = 9 ( z ) ( a + z )  12) = (N(z))-1'29(z)lo). (22) 

and the displacement group 9 ( z )  = exp zT for a :  

These coherent states for q f 1 do not coincide with the usual states and we postpone 
the discussion of their completeness until the next publication. 

There exists an analogue of the holomorphic representation for the q oscillator 
(also known in 4 analysis [13]) where a+ is the multiplication operator of x and a is 
the q differentiation operator D: 

Let us consider multimode 4 oscillators. In [7-9,6] n independent (mutually 
commuting) q oscillators a,, a:, i, j = 1 , 2 , .  . . , n were used. Another set of operators 
vi, 'p: was introduced in [lo]. This system satisfies the relations ( i < j )  

Q:Q: = 4(9:CPI QjQi = 4Qi(pJ 

Q k q :  = q'P:(Pk 1 f k  

~ i ~ : - q 2 ~ : ~ i = l + ( q 2 - 1 )  (P:qk* 
k > r  

the operators ql ,  'p: can be expressed in terms of independent q oscillators (9; = (qJ)+):  

= q ' h > t N h  N1/2al = q"r>rNrA 4 

Because the relations (1) and (2) depend on two parameters q and Planck's constant 
h (a*  + a* /  f i l l 2 ,  N + Nh-' ,  q = exp y h )  one can consider different limits: q + 1 ( y + 0) 
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reproducing the Heisenberg algebra and f i  + 0 ( y is fixed) obtaining the classical system 
with one degree of freedom and the Poisson bracket for complex coordinates 

(24) 
We would like to mention that a difficult problem is the determination of the 

invariance group of the q oscillator. The relations ( l ) ,  (2) or (24) are not invariant 
with respect to the translations or the Bogoliubov transformations. However, the q 
oscillator can be obtained from the finite dimensional representations of the quantum 
sI(2) algebra ( p  = q): 

by the contraction procedure [6,15]. 

was given in [7-91: 

The relations of the quantum SU(1, l )  algebra have opposite signs in the second 
formula of (25) 

{a* ,  a }  = i ( l +  y2(a*a)2)”2.  

JO 9 J+ 1 = f J* 9 [ J+ 9 5-1 = [2J01, (25) 

The realisation of the generators (25) in terms of two independent q oscillators 

Jo = f( NI - N J  J+=a:a2, J- = a l a l .  (26) 

[ K O ,  K*1= * K ,  [ K + ,  K-I = -[2Ko1, (27) 
with the Casimir operator 

c = [KO - h]: - K+K-. 
It is possible to realise these generators in the Fock space 2tF of one q oscillator 

KO = ;( N +f) K ,  = P(a+)*  K- = pa2 p = q 2 .  (29) 
The corresponding representation in XF is reducible because the operator P = (-1) 
commutes with all the generators (29). The decomposition of 2tF has two irreducible 
components with eigenvalues (-l)E, E =0, 1 of the operator P: 

( P  = ( 4  + q - Y )  

%F= 2 1  (30) 
consisting of the vectors with even and odd numbers of q-oscillator excitations. 

In the case of two q oscillators one can easily construct two realisations of the 
su,(l, 1) algebra (27). One is similar to (26) while the other is connected with (29) 
and the existence of a comultiplication for the su, ( 1 , l )  [3,4] or the possibility to 
define the action of the su,(l, 1 )  generators in the tensor product of representation 
spaces. 

If we define K O ,  K, as 

KO = : ( N I  + N2 + 1 )  K+ = (K- )+  = a:al I L = q  (31) 
then these generators satisfy (27). As a result we have a reducible representation of 
the quantum algebra SU,(1, 1 )  in the space %$‘)O2t~) because the operator N ,  - N2 
commutes with K O ,  K ,  (31). The decomposition of this representation into irreducible 
ones is 

w 

@)@@)= c x/ (32) 
I = -w  

where the basis of the subspace %’/ consists of the vectors { ~ n , ) @ ~ n 2 ) ,  n , = n , = l ,  
n,, n2=0, 1,2 , .  . .}. 

If we use a coproduct A: SU,(l, l )+SU, ( l ,  l )OSU,( l ,  1 )  [3,4]: 
A( KO) = KO@ I + Z @ KO A(K+)=  K , @ p % + j ~ - ~ o @ K ,  (33) 

together with the notation a,  = a 0 I, a2 = I O  a and (29) then we can define another 
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representation of SU,( 1 , l )  in the space (32) 
K O  = f( N ,  + N2+ 1)  
K ,  = P((a:)2q”2’‘/2+ q - N l - ” 2 ( a l ) 2 )  (34) 

P = q 2  

K -  = P((a,)’q”Z+’/’+ q-Nl-1’2(a2)2) .  
Now the decomposition of XFOXF into irreducible representations has only one 
multiplicity free component. This decomposition is 

00 

XF@XF= % 1 / 2 @ @ ’ @  (Z.@Xs+1,2) (35) 
s = l  

where we parametrise the irreducible subspaces X. by the eigenvalue of KO on the 
corresponding lowest weight vector: 

K o I  s, 0) = SI s, 0) 
Is, n>=(K+)”ls,O) 

K-ls, 0) = 0 
n = 0 ,  1,2 , .  . . . 

In the three cases (29), (31), (34) we have the q-oscillator realisations of the su,( 1 , l )  
irreducible representations which belong to the discrete series. Formal construction 
of other series can be found for example in [16]. 

As in the su( 1 , l )  it is possible to construct coherent states of the quantum algebra 
su,(l, 1 )  with corresponding modifications (cf (19), (20)). The quantum algebras can 
be used for the description of the dynamical symmetries of physical systems. In 
particular, the operators of the q-oscillator type, such as (14), were used in the quantum 
discrete integrable model which is the analogue of the one-dimensional nonlinear 
Schrodinger equation [17]. Work along these lines is in progress. 

The authors are grateful to M Chaichian for useful discussions and for some 
important references. 
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